57 research outputs found

    Demonstration of integrated microscale optics in surface-electrode ion traps

    Full text link
    In ion trap quantum information processing, efficient fluorescence collection is critical for fast, high-fidelity qubit detection and ion-photon entanglement. The expected size of future many-ion processors require scalable light collection systems. We report on the development and testing of a microfabricated surface-electrode ion trap with an integrated high numerical aperture (NA) micromirror for fluorescence collection. When coupled to a low NA lens, the optical system is inherently scalable to large arrays of mirrors in a single device. We demonstrate stable trapping and transport of 40Ca+ ions over a 0.63 NA micromirror and observe a factor of 1.9 enhancement in photon collection compared to the planar region of the trap.Comment: 15 pages, 8 figure

    Use of sonic tomography to detect and quantify wood decay in living trees.

    Get PDF
    Premise of the studyField methodology and image analysis protocols using acoustic tomography were developed and evaluated as a tool to estimate the amount of internal decay and damage of living trees, with special attention to tropical rainforest trees with irregular trunk shapes.Methods and resultsLiving trunks of a diversity of tree species in tropical rainforests in the Republic of Panama were scanned using an Argus Electronic PiCUS 3 Sonic Tomograph and evaluated for the amount and patterns of internal decay. A protocol using ImageJ analysis software was used to quantify the proportions of intact and compromised wood. The protocols provide replicable estimates of internal decay and cavities for trees of varying shapes, wood density, and bark thickness.ConclusionsSonic tomography, coupled with image analysis, provides an efficient, noninvasive approach to evaluate decay patterns and structural integrity of even irregularly shaped living trees

    The drivers of tropical speciation

    Get PDF
    © 2014 Macmillan Publishers Limited. All rights reserved. Since the recognition that allopatric speciation can be induced by large-scale reconfigurations of the landscape that isolate formerly continuous populations, such as the separation of continents by plate tectonics, the uplift of mountains or the formation of large rivers, landscape change has been viewed as a primary driver of biological diversification. This process is referred to in biogeography as vicariance. In the most species-rich region of the world, the Neotropics, the sundering of populations associated with the Andean uplift is ascribed this principal role in speciation. An alternative model posits that rather than being directly linked to landscape change, allopatric speciation is initiated to a greater extent by dispersal events, with the principal drivers of speciation being organism-specific abilities to persist and disperse in the landscape. Landscape change is not a necessity for speciation in this model. Here we show that spatial and temporal patterns of genetic differentiation in Neotropical birds are highly discordant across lineages and are not reconcilable with a model linking speciation solely to landscape change. Instead, the strongest predictors of speciation are the amount of time a lineage has persisted in the landscape and the ability of birds to move through the landscape matrix. These results, augmented by the observation that most species-level diversity originated after episodes of major Andean uplift in the Neogene period, suggest that dispersal and differentiation on a matrix previously shaped by large-scale landscape events was a major driver of avian speciation in lowland Neotropical rainforests

    A Phylogenomic Supertree of Birds

    Get PDF
    It has long been appreciated that analyses of genomic data (e.g., whole genome sequencing or sequence capture) have the potential to reveal the tree of life, but it remains challenging to move from sequence data to a clear understanding of evolutionary history, in part due to the computational challenges of phylogenetic estimation using genome-scale data. Supertree methods solve that challenge because they facilitate a divide-and-conquer approach for large-scale phylogeny inference by integrating smaller subtrees in a computationally efficient manner. Here, we combined information from sequence capture and whole-genome phylogenies using supertree methods. However, the available phylogenomic trees had limited overlap so we used taxon-rich (but not phylogenomic) megaphylogenies to weave them together. This allowed us to construct a phylogenomic supertree, with support values, that included 707 bird species (~7% of avian species diversity). We estimated branch lengths using mitochondrial sequence data and we used these branch lengths to estimate divergence times. Our time-calibrated supertree supports radiation of all three major avian clades (Palaeognathae, Galloanseres, and Neoaves) near the Cretaceous-Paleogene (K-Pg) boundary. The approach we used will permit the continued addition of taxa to this supertree as new phylogenomic data are published, and it could be applied to other taxa as well

    Targeted sequencing for high-resolution evolutionary analyses following genome duplication in salmonid fish:Proof of concept for key components of the insulin-like growth factor axis

    Get PDF
    Acknowledgements This study was funded by a Natural Environment Research Council grant (NERC, project code: NBAF704). FML is funded by a NERC Doctoral Training Grant (Project Reference: NE/L50175X/1). RLS was an undergraduate student at the University of Aberdeen and benefitted from financial support from the School of Biological Sciences. DJM is indebted to Dr. Steven Weiss (University of Graz, Austria), Dr. Takashi Yada (National Research Institute of Fisheries Science, Japan), Dr. Robert Devlin (Fisheries and Oceans Canada, Canada), Prof. Samuel Martin (University of Aberdeen, UK), Mr. Neil Lincoln (Environment Agency, UK) and Prof. Colin Adams/Mr. Stuart Wilson (University of Glasgow, UK) for providing salmonid material or assisting with its sampling. We are grateful to staff at the Centre for Genomics Research (University of Liverpool, UK) (i.e. NERC Biomolecular Analysis Facility – Liverpool; NBAF-Liverpool) for performing sequence capture/Illumina sequencing and providing us with details on associated methods that were incorporated into the manuscript. Finally, we are grateful to the organizers of the Society of Experimental Biology Satellite meeting 'Genome-powered perspectives in integrative physiology and evolutionary biology' (held in Prague, July 2015) for inviting us to contribute to this special edition of Marine Genomics and hosting a really stimulating meeting.Peer reviewedPublisher PD

    Developing a community-based genetic nomenclature for anole lizards

    Get PDF
    Background: Comparative studies of amniotes have been hindered by a dearth of reptilian molecular sequences. With the genomic assembly of the green anole, Anolis carolinensis available, non-avian reptilian genes can now be compared to mammalian, avian, and amphibian homologs. Furthermore, with more than 350 extant species in the genus Anolis, anoles are an unparalleled example of tetrapod genetic diversity and divergence. As an important ecological, genetic and now genomic reference, it is imperative to develop a standardized Anolis gene nomenclature alongside associated vocabularies and other useful metrics. Results: Here we report the formation of the Anolis Gene Nomenclature Committee (AGNC) and propose a standardized evolutionary characterization code that will help researchers to define gene orthology and paralogy with tetrapod homologs, provide a system for naming novel genes in Anolis and other reptiles, furnish abbreviations to facilitate comparative studies among the Anolis species and related iguanid squamates, and classify the geographical origins of Anolis subpopulations. Conclusions: This report has been generated in close consultation with members of the Anolis and genomic research communities, and using public database resources including NCBI and Ensembl. Updates will continue to be regularly posted to new research community websites such as lizardbase. We anticipate that this standardized gene nomenclature will facilitate the accessibility of reptilian sequences for comparative studies among tetrapods and will further serve as a template for other communities in their sequencing and annotation initiatives.Organismic and Evolutionary BiologyOther Research Uni
    • 

    corecore